当前位置:首页>科技>正文

经典计算机和量子计算机有什么区别 什么是量子计算机

2023-05-08 11:47:36 互联网 未知 科技

 经典计算机和量子计算机有什么区别 什么是量子计算机

经典计算机和量子计算机有什么区别?

量子计算机(quantum computer)是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。当某个装置处理和计算的是量子信息,运行的是量子算法时,它就是量子计算机。
经典计算机:
要说清楚量子计算,首先看经典计算机。经典计算机从物理上可以被描述为对输入信号序列按一定算法进行变换的机器,其算法由计算机的内部逻辑电路来实现。
1.其输入态和输出态都是经典信号,用量子力学的语言来描述,也即是:其输入态和输出态都是某一力学量的本征态。如输入二进制序列0110110,用量子记号,即|0110110>。所有的输入态均相互正交。对经典计算机不可能输入如下叠加态:C1|0110110 > C2|1001001>。
2.经典计算机内部的每一步变换都演化为正交态,而一般的量子变换没有这个性质,因此,经典计算机中的变换(或计算)只对应一类特殊集。
量子计算机:
量子计算机的输入用一个具有有限能级的量子系统来描述,如二能级系统(称为量子比特(qubits)),量子计算机的变换(即量子计算)包括所有可能的幺正变换。
1.量子计算机的输入态和输出态为一般的叠加态,其相互之间通常不正交;
2量子计算机中的变换为所有可能的幺正变换。得出输出态之后,量子计算机对输出态进行一定的测量,给出计算结果。
由此可见,量子计算对经典计算作了极大的扩充,经典计算是一类特殊的量子计算。量子计算最本质的特征为量子叠加性和量子相干性。量子计算机对每一个叠加分量实现的变换相当于一种经典计算,所有这些经典计算同时完成,量子并行计算。

什么是量子计算机?

量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。当某个装置处理和计算的是量子信息,运行的是量子算法时,它就是量子计算机。量子计算机的概念源于对可逆计算机的研究。研究可逆计算机的目的是为了解决计算机中的能耗问题。

20世纪60年代至70年代,人们发现能耗会导致计算机中的芯片发热,极大地影响了芯片的集成度,从而限制了计算机的运行速度。研究发现,能耗来源于计算过程中的不可逆操作。那么,是否计算过程必须要用不可逆操作才能完成呢?问题的答案是:所有经典计算机都可以找到一种对应的可逆计算机,而且不影响运算能力。既然计算机中的每一步操作都可以改造为可逆操作,那么在量子力学中,它就可以用一个幺正变换来表示。早期量子计算机,实际上是用量子力学语言描述的经典计算机,并没有用到量子力学的本质特性,如量子态的叠加性和相干性。在经典计算机中,基本信息单位为比特,运算对象是各种比特序列。与此类似,在量子计算机中,基本信息单位是量子比特,运算对象是量子比特序列。所不同的是,量子比特序列不但可以处于各种正交态的叠加态上,而且还可以处于纠缠态上。这些特殊的量子态,不仅提供了量子并行计算的可能,而且还将带来许多奇妙的性质。与经典计算机不同,量子计算机可以做任意的幺正变换,在得到输出态后,进行测量得出计算结果。因此,量子计算对经典计算作了极大的扩充,在数学形式上,经典计算可看作是一类特殊的量子计算。量子计算机对每一个叠加分量进行变换,所有这些变换同时完成,并按一定的概率幅叠加起来,给出结果,这种计算称作量子并行计算。除了进行并行计算外,量子计算机的另一重要用途是模拟量子系统,这项工作是经典计算机无法胜任的。

无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。遗憾的是,在实际系统中量子相干性很难保持。在量子计算机中,量子比特不是一个孤立的系统,它会与外部环境发生相互作用,导致量子相干性的衰减,即消相干。因此,要使量子计算成为现实,一个核心问题就是克服消相干。而量子编码是迄今发现的克服消相干最有效的方法。主要的几种量子编码方案是:量子纠错码、量子避错码和量子防错码。量子纠错码是经典纠错码的类比,是目前研究的最多的一类编码,其优点为适用范围广,缺点是效率不高。

迄今为止,世界上还没有真正意义上的量子计算机。但是,世界各地的许多实验室正在以巨大的热情追寻着这个梦想。如何实现量子计算,方案并不少,问题是在实验上实现对微观量子态的操纵确实太困难了。目前已经提出的方案主要利用了原子和光腔相互作用、冷阱束缚离子、电子或核自旋共振、量子点操纵、超导量子干涉等。现在还很难说哪一种方案更有前景,只是量子点方案和超导约瑟夫森结方案更适合集成化和小型化。将来也许现有的方案都派不上用场,最后脱颖而出的是一种全新的设计,而这种新设计又是以某种新材料为基础,就像半导体材料对于电子计算机一样。研究量子计算机的目的不是要用它来取代现有的计算机。量子计算机使计算的概念焕然一新,这是量子计算机与其他计算机如光计算机和生物计算机等的不同之处。量子计算机的作用远不止是解决一些经典计算机无法解决的问题。

量子通讯是如何进行的和量子计算机是怎么一回事


量子通讯是利用量子纠缠效应进行信息传递的一种新型的通讯方式。
量子离物传态(又称量子隐形传态)是这种新型的通讯方式的原理演示。由于量子纠缠代表的关联依赖于对两个纠缠的粒子之一测量什么,直接通过量子纠缠不能传递物体的全部信息。但是,我们却可以设想这样的量子通讯过程:将某物体待传递量子态的信息分成经典和量子两个部分,它们分别经由经典通道和量子通道传送给接收者。经典信息是发送者对原物进行某种测量而提取的,量子信息是发送者在测量中未提取的大量信息;接收者在获得这两种信息后,就可以制备出原来量子态的完全复制品。该过程中传送的仅仅是该物体的量子态,而不是该物体本身。发送者甚至可以对这个待传量子态一无所知,而接收者则能将他持有的粒子处于原物体的量子态上。
利用这种量子纠缠特性,Bennet和其他5位来自不同国家的科学家等在1993年提出了演示这种量子通讯的量子离物传态(Teleportation)方案:通过在经典信道中送2个比特的信息破坏空间某点的量子态,可以在空间不同点制备出一个相同的量子态. 要指出的是,通常的离物传态(Teleportation)描述了这样一种奇妙的、有点象科幻小说的场景:某人突然消失掉,而在远处莫明其妙地显现出来。 Bennet等人的量子离物传态方案具体描述如下:
设想Bob要将他持有的粒子B的未知量子态|u>=a|0> b|1> 传给远方的持有粒子A 的Alice. 他可以操控他持有的粒子B和由BBO型量子纠缠源分发给来的粒子S。由于量子纠缠源产生了粒子A和粒子S的量子纠缠态|ERP>, Bob对粒子B和粒子S的联合测量结果(依赖于对A和S的4个Bell基的区分),会导致Alice持有的粒子A塌缩到一个与|u>相联系的状态|u’>=W|u> 上, 其中幺正变换W 完全由Bob对粒子A和粒子S的联合测量结果的2个比特经典信息决定,而与待传的未知量子态无关。 Bob将即己测到的结果,通过经典通道(打电话、发传真或 e-mail等)告诉Alice。远方的Alice 就知道粒子A已经塌缩到|u’>上.选取合适的么正变换W , Alice便可以将粒子A制备在|u>上了。
量子计算机
从原理上讲, 经典计算可以被描述为对输入信号序列按一定算法进行变换(逻辑门操作)的物理过程。基于经典比特的非0即1的确定特征,经典算法是通过经典计算机(或经典图灵机)的内部逻辑电路加以实现的.而量子计算,则是基于量子比特的既 |0> 又 |1>相干叠加特征,对可由量子叠加态描述的输入信号,根据量子的算法要求,进行叫做“量子逻辑门操作”的幺正变换. 这是一个被人为控制的、以输入态为初态的量子物理演化过程。对末态— 输出态进行量子测量,给出量子计算的结果. 顾名思义,所谓的量子计算机(quantum computer) 就是实现这种量子计算过程的机器。
量子计算机的概念最早源于二十世纪六、七十年代对克服能耗问题的可逆计算机的研究.计算机芯片的发热,影响芯片的集成度,从而大大限制了计算机的运行速度. Landauer 关于“能耗产生于计算过程中的不可逆操作”的发现表明,虽然物理原理并没有限制能耗的下限,但必须将不可逆操作改造为可逆操作,才能大大提高芯片的集成度。直观地说,当电路集成密度很大时,Δx很小时,Δp就会很大,电子不再被束缚,就会出现量子物理所描述的量子干涉效应,从而破坏传统计算机芯片的功能。对于现有的传统计算机技术,量子力学的限制似乎是一个不可逾越的障碍。只有量子力学中的幺正变换,才能真正地实现可逆操作。从理论观念的角度讲,量子计算的想法与美国著名物理学家R. Feynman “不可能用传统计算机全面模拟量子力学过程”的看法直接相关。在此基础上,1985年,英国牛津大学的D. Deutsch初步阐述了量子图灵机的概念,并且指出了量子图灵机可能比经典图灵机具有更强大的功能。1995年,Shor提出了大数因子化量子算法,并有其他人演示了量子计算在冷却离子系统中实现的可能性,量子计算机的研究才变成物理学家、计算机专家和数学家共同关心的交叉领域研究课题。
量子并行性是量子计算的关键所在。显而易见,描述有2个比特的量子计算机,需要4个系数数字;描述n个量子比特的量子计算机就需要2n个系数数字。例如,如果n等于50,那就需要大约1015个数来描述量子计算机的所有可能状态。虽然n增大时所有可能状态的数目将迅速变成一个很大的集合,但由于态叠加原理,量子计算机操作—幺正变换能够对处于叠加态的所有分量同时进行。这就是所谓的量子并行性。由于这一奇妙的内禀并行性,一台量子计算机仅仅靠一个处理器就能够很自然地同时进行非常多的运算。典型的量子计算有Shor的大数因子化和Grover的数据库量子搜索。

量子计算机是什么?

量子计算机技术涉及利用量子粒子作为一个替代位今天的电脑。 该理论的量子计算机始于20年前与保罗贝尼奥夫,物理学家在阿贡国家实验室,谁使用的概念图灵机作为一种模式的量子计算机。 一个图灵机组成的一盘磁带无限期长度可分为大小均匀广场。 装置能阅读的空白和符号,在磁带是用来指示一台机器,使某一特定程序可以完成。

基本理论量子计算机
量子计算机利用量子粒子的“磁带”的图灵实验。 由于存在一个符号或一个空白的图灵机的磁带,象征二进制数字,所以可以状况的量子粒子被用来举行这些价值观。 使用多量子粒子也意味着,量子计算机将大大快于图灵机,因为它可以执行数计算同时进行。

此外,与今天的电脑使用的基本位其中只有两个国家( 1或0 ) ,量子计算机存储信息的量子位能容纳两个以上的价值。 这种能力的量子位存在于两个以上国家意味着量子计算机有能力的表演超过了100万计算同时在同一时间和潜力,有很多更快和功能更强大很多比今天的超级计算机。

量子计算机还可以利用另外一个重要特点量子粒子被称为纠缠。 财产的纠缠可以转让,并确定价值或自旋的量子粒子通过引入外部力量。

发展量子计算机
虽然量子粒子可用于制造计算机,量子计算机仍然远远没有成为现实,大部分的研究是理论。 迄今为止,科学家一直无法操纵超过7量子位在解决数学公式。 有这方面的事态发展,然而,最引人注目的有:

试验于2000年8月的研究人员在IBM
阿尔马登研究中心能够使细胞核的五个氟原子相互作用的量子位利用磁共振成像和无线电频率脉冲。 这个实验证明是成功的解决了复杂的数学问题,以便找到所谓(确定时期的一个函数)的一个步骤。 今天的计算机能够解决同样的问题只有通过反复循环。

同一年试验,洛斯阿拉莫斯国家实验室
研究人员已经能够建立一个7量子位量子计算机,采用核磁共振影响粒子在原子核中的分子跨巴豆流体(液体由四个碳原子和6个氢原子) 。 核磁共振用线的粒子虽然应用电磁脉冲模仿位信息编码过程的数字化电脑。

量子计算机有多强大

普通的数字计算机在0和1的二进制系统上运行,称为“比特”(bit)。但量子计算机要远远更为强大。它们可以在量子比特(qubit)上运算,可以计算0和1之间的数值。假想一个放置在磁场中的原子,它像陀螺一样旋转,于是它的旋转轴可以不是向上指就是向下指。常识告诉我们:原子的旋转可能向上也可能向下,但不可能同时都进行。但在量子的奇异世界中,原子被描述为两种状态的总和,一个向上转的原子和一个向下转的原子的总和。在量子的奇妙世界中,每一种物体都被使用所有不可思议状态的总和来描述。
实际运用
D-Wave 量子计算机-首台商用量子计算机在2007年,加拿大计算机公司D-Wave展示了全球首台量子计算机“Orion(猎户座)”,它利用了量子退火效应来实现量子计算。该公司此后在2011年推出具有128个量子位的D-Wave One型量子计算机并在2013年宣称NASA与谷歌公司共同预定了一台具有512个量子位的D-Wave Two量子计算机。
NSA加密破解计划
2014年1月3日,美国国家安全局(NSA)正在研发一款用于破解加密技术的量子计算机,希望破解几乎所有类型的加密技术。投入巨资 投入4.8亿进行“渗透硬目标”
首台编程通用量子计算机
2009年11月15日,世界首台可编程的通用量子计算机正式在美国诞生。不过根据初步的测试程序显示,该计算机还存在部分难题需要进一步解决和改善。科学家们认为,可编程量子计算机距离实际应用已为期不远。
单原子量子信息存储首次实现
2013年5月,德国马克斯普朗克量子光学研究所的科学家格哈德·瑞普领导的科研小组,首次成功地实现了用单原子存储量子信息——将单个光子的量子状态写入一个铷原子中,经过180微秒后将其读出。最新突破有望助力科学家设计出功能强大的量子计算机,并让其远距离联网构建“量子网络”。
首次实现线性方程组量子算法
2013年6月8日,由中国科学技术大学潘建伟院士领衔的量子光学和量子信息团队的陆朝阳、刘乃乐研究小组,在国际上首次成功实现了用量子计算机求解线性方程组的实验。该研究成果发表在6月7日出版的《物理评论快报》上。
迄今为止,世界上还没有真正意义上的量子计算机。但是,世界各地的许多实验室正在以巨大的热情追寻着这个梦想。如何实现量子计算,方案并不少,问题是在实验上实现对微观量子态的操纵确实太困难了。已经提出的方案主要利用了原子和光腔相互作用、冷阱束缚离子、电子或核自旋共振、量子点操纵、超导量子干涉等。

100个字概括量子计算机的概念?

是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。当某个装置处理和计算的是量子信息,运行的是量子算法时,它就是量子计算机。量子计算机的概念源于对可逆计算机的研究。

量子计算机与现在的计算机有什么不同知乎

一般电脑运算只能记录0与1,可以同时表示多种状态。
如果把半导体比喻成单一乐器,那量子电脑就像交响乐团,
一次运算可以处理多种不同状况,因此,一个40位元的量子电脑,
就能在很短时间内解开1024位元电脑花上数十年解决的问题。

量子计算机是跟据人脑制成的吗

不是。量子计算机是根据量子运动方式来做计算。人脑的计算能力当不到任何一个普通计算机。只是人脑有思维能力和想象能力。所以人脑能创造一切。但计算机虽然计算能力很强。但只是根据指令来做计算。而发布指令的就是人类。

量子计算机到量子比特,各国为什么致力于这一领域?

在微观尺度上,一个量子比特可以同时处于多个状态,而不像传统计算机中的比特只能处于0和1中的一种状态。
这样的一些特性,让量子计算机的计算能力能远超传统计算机。美国谷歌公司等机构在2015年宣布,它们的“D波”(D-Wave)量子模拟机对某些问题的求解速度已达到传统计算机的1亿倍。虽然它并不被认为是真正的量子计算机,但量子计算的巨大潜力已经显露。

量子计算需要克服环境噪声、比特错误和实现可容错的普适量子纠错等一系列难题,真正量子计算机研发挑战巨大。 
为加速进入量子计算机阵营,各国政府纷纷加大投入。欧盟在2016年宣布投入10亿欧元支持量子计算研究,美国仅政府的投资即达每年3.5亿美元。中国也在大力投入,目前正在筹建量子信息国家实验室,一期总投资约70亿元。
如果“量子霸权”实现,人类计算能力将迎来飞跃,接下来就会是在多个领域的推广。一些行业巨头已经盯上了量子计算未来应用:阿里巴巴建立了量子计算实验室中科院与阿里云合作发布量子计算云平台IBM也在去年宣布计划建立业界首个商用通用量子计算平台IBM Q,还与摩根大通等公司合作计划在2021年前推出首个在金融领域的量子计算应用。

传统计算机要100年才能破解的难题,量子计算机可能仅需1秒,如此“洪荒之力”、酷炫前景各国岂能袖手旁观?
去年底,美国IBM公司宣布推出全球首款50量子比特的量子计算原型机,量子计算领域的竞争进入关键阶段。

聪者听于无声,明者见于未形。

当魔幻般的理论在现实中推动进步,各国的科研实力体现无疑。

在IBM公司宣布成果的半年前,中国科学家已发布世界首台超越早期传统计算机的光量子计算机,实现10个超导量子比特纠缠,在操纵质量上也是全球领先。

从个位数到几十量子比特的进展,各国你追我赶,这到底是为什么?

从1970年到2005年,正如摩尔定律预测的一样,每18个月集成电路上可容纳的元器件数目约增加一倍,计算机的性能也相应提升近一倍。但2005年后这种趋势就开始放缓,极其微小的集成电路面临散热等问题考验。